The Action of Basal Ganglia in the Brain: from Basic Research to Neurological Diseases

Outline

Basal ganglia circuits

Two major pathways running through the basal ganglia 1) Direct pathway (dopamine D1 receptor):

Precentral motor fields (premotor, motor, supplemental Ctx) \uparrow (glutamate, +) \rightarrow CP \uparrow (GABA, -) \rightarrow GPi & SNpr \downarrow (GABA, -) \rightarrow thalamus $\uparrow \rightarrow$ premotor, supplemental cortices \uparrow

Function: activation of the direct pathway results in **facilitation** of movement **2**) *Indirect pathway (dopamine D2 receptor):*

Precentral motor fields (premotor, motor, supplemental Ctx) \uparrow (glutamate, +) \rightarrow CP \uparrow (GABA, -) \rightarrow GPe \downarrow (GABA, -) \rightarrow subthalamic nucleus \uparrow (glutamate, +) \rightarrow GPe & GPi \uparrow (GABA, -) \rightarrow thalamus $\downarrow \rightarrow$ premotor, supplemental cortices \downarrow Function: activation of the indirect pathway results in **inhibition** of movement

Dopaminergic modulation of the direct and indirect pathways:

1) Dopamine activates the direct pathway: movement \uparrow

2) Dopamine inactivates the indirect pathway: movement \uparrow

3) Therefore, the net effects of dopamine on the two pathways is to **facilitate** movements by acting on both pathways

Parkinson's disease:

Symptoms: Akinesia; bradykinesia, rigidity, tremor

Aeitiology: Selective degeneration of dopaminergic neurons in SNpc with systematic disruption of mitochondria electron transport complex I activity including blood and muscle cells; Lewy bodies occur

Mechanisms: Lack of dopamine in the striatum \rightarrow decreased activity of direct pathway (D1R) and increased activity of indirect pathway (D2R) \rightarrow net effects: hyperactivity of Gpi neurons \rightarrow thalamus activity $\downarrow \rightarrow$ cortical activity $\downarrow \rightarrow$ movement \downarrow

Animal models: drug-induced selective degeneration of dopamine neurons in SNpc

1) 6-OHDA lesion

2) MPTP: MPP+ disrupts mitochondria electron transport complex I in dopamine neurons

3) Pesticide (rotenone): systematic disruption of mitochondria electron transport complex I activity; Lewy bodies occurs (α -syncuclein)

Drug therapy: L-DOPA

Surgical intervention therapies:

Strategy: decrease the hyperactivity of Gpi neurons

1) Pallidotomy: selective lesion of the posterior (sensorimotor) part of Gpi

2) Deep brain stimulation (DBS): high frequency stimulation can block neural activity in Gpi.

3) Neural transplantation: iPS stem cells